Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents
نویسندگان
چکیده
This paper proposes a generic framework for the registration, the template estimation and the variability analysis of white matter fiber bundles extracted from diffusion images. This framework is based on the metric on currents for the comparison of fiber bundles. This metric measures anatomical differences between fiber bundles, seen as global homologous structures across subjects. It avoids the need to establish correspondences between points or between individual fibers of different bundles. It can measure differences both in terms of the geometry of the bundles (like its boundaries) and in terms of the density of fibers within the bundle. It is robust to fiber interruptions and reconnections. In addition, a recently introduced sparse approximation algorithm allows us to give an interpretable representation of the fiber bundles and their variations in the framework of currents. First, we used this metric to drive the registration between two sets of homologous fiber bundles of two different subjects. A dense deformation of the underlying white matter is estimated, which is constrained by the bundles seen as global anatomical landmarks. By contrast, the alignment obtained from image registration is driven only by the local gradient of the image. Second, we propose a generative statistical model for the analysis of a collection of homologous bundles. This model consistently estimates prototype fiber bundles (called template), which capture the anatomical invariants in the population, a set of deformations, which align the geometry of the template to that of each subject and a set of residual perturbations. The statistical analysis of both the deformations and the residuals describe the anatomical variability in terms of geometry (stretching, torque, etc.) and "texture" (fiber density, etc.). Third, this statistical modeling allows us to simulate new synthetic bundles according to the estimated variability. This gives a way to interpret the anatomical features that the model detects consistently across the subjects. This may be used to better understand the bias introduced by the fiber extraction methods and eventually to give anatomical characterization of the normal or pathological variability of fiber bundles.
منابع مشابه
A Statistical Model of White Matter Fiber Bundles Based on Currents
The purpose of this paper is to measure the variability of a population of white matter fiber bundles without imposing unrealistic geometrical priors. In this respect, modeling fiber bundles as currents seems particularly relevant, as it gives a metric between bundles which relies neither on point nor on fiber correspondences and which is robust to fiber interruption. First, this metric is incl...
متن کاملWhite Matter Bundle Registration and Population Analysis Based on Gaussian Processes
This paper proposes a method for the registration of white matter tract bundles traced from diffusion images and its extension to atlas generation, Our framework is based on a Gaussian process representation of tract density maps. Such a representation avoids the need for point-to-point correspondences, is robust to tract interruptions and reconnections and seamlessly handles the comparison and...
متن کاملAutomated Atlas-Based Clustering of White Matter Fiber Tracts from DTMRI
A new framework is presented for clustering fiber tracts into anatomically known bundles. This work is motivated by medical applications in which variation analysis of known bundles of fiber tracts in the human brain is desired. To include the anatomical knowledge in the clustering, we invoke an atlas of fiber tracts, labeled by the number of bundles of interest. In this work, we construct such...
متن کاملClustering of Whole-Brain White Matter Short Association Bundles Using HARDI Data
Human brain connectivity is extremely complex and variable across subjects. While long association and projection bundles are stable and have been deeply studied, short association bundles present higher intersubject variability, and few studies have been carried out to adequately describe the structure, shape, and reproducibility of these bundles. However, their analysis is crucial to understa...
متن کاملJoint Morphometry of Fiber Tracts and Gray Matter Structures Using Double Diffeomorphisms
This work proposes an atlas construction method to jointly analyse the relative position and shape of fiber tracts and gray matter structures. It is based on a double diffeomorphism which is a composition of two diffeomorphisms. The first diffeomorphism acts only on the white matter keeping fixed the gray matter of the atlas. The resulting white matter, together with the gray matter, are then d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 55 3 شماره
صفحات -
تاریخ انتشار 2011